
Partitioning-insensitive Watermarking Approach
for Distributed Relational Databases

Sapana Rani, Dileep Kumar Koshley, and Raju Halder

Indian Institute of Technology, Patna,
{sapana.pcs13, dileep.pcs15, halder}@iitp.ac.in

Abstract. This paper1 introduces an efficient watermarking approach
for distributed relational databases, which is generic enough to support
database outsourcing and hybrid partitioning. Various challenges, like
partitioning and distribution of data, existence of replication etc., are
addressed effectively by watermarking different partitions using different
sub keys and by maintaining a meta-data about the data distribution.
Notably, the embedding and detection phases are designed with the aim
of making embedded watermarks partitioning-insensitive. That means,
database partitioning and its distribution do not disturb any embedded
watermark at all. To the best of our knowledge, this is the first proposal
on watermarking of distributed relational databases supporting database
outsourcing, its partitioning and distribution in a distributed setting.

Keywords: Watermarking, Distributed Databases, Security

1 Introduction

Distributed Database System has always been an efficient solution to man-
age large-scale databases over computer networks [2]. In recent years, adapt-
ing cloud-based technology to avail its efficient and cost-effective services are
continuously gaining paramount attention from both academia and industry.
For instance, cloud-based Database-as-a-Service (DBaaS), such as Amazon Re-
lational Database Service (RDS) [3], Microsoft SQL Azure [4], etc., is now-a-
days appealing for organizations to outsource their databases. In particular, a
shared platform (e.g., database server hardware and software) is provided to
host multiple outsourced databases, leading to a scalable, elastic and economi-
cally viable solution. Clients can easily deploy their own databases in the cloud
to avail all required services without investing much on resources [5]. In a cloud-
based distributed database system, data owners outsource their databases to a
cloud-based service provider that partitions and distributes them among multi-
ple servers interconnected by a communication network.

Unfortunately, outsourcing valuable databases to third-party service providers,
without taking proper precaution, may increase the possibility of certain typ-
ical attacks, such as copyright infringement, data tampering, integrity viola-
tions, piracy, illegal redistribution, ownership claiming, forgery, theft, etc [6].

1 This work is a revised and extended version of [1].

Database watermarking has emerged as a promising technique to countermea-
sure the above-mentioned threats [6]. This embeds some kind of information
(known as watermark) into the data using a secret key, and later extracts the
same, on demand, to reason about the suspicious data. For example, suppose
a watermark W is embedded into an original database using a private key K
which is known only to the owner. On receiving any suspicious database, the
owner may perform a verification process using the same private key K by ex-
tracting and comparing the embedded watermark (if present) with the original
watermark information W .

In the context of centralized database systems, a wide range of works on the
watermarking of centralized databases has been proposed over the past decades
[7–17]. Specifically, they are based on random bit flipping [8, 9], fake tuple inser-
tion [18], random bit insertion [17, 19], tuple reordering [13], binary image gen-
eration [15, 20], generation of local characteristics like range, digit and length
frequencies [21], matrix operations [22], etc. In general, they are categorized
into distortion-based and distortion-free depending on whether the embedded
watermark distorts the underlying database content or not. These techniques
are designed specifically to address the security risks in centralized databases
only, making them completely unadaptable to the scenario where databases are
partitioned and distributed over a network. As already mentioned, popular ap-
plications where people often face such issues include, for example, cloud-based
Database-as-a-Service (DBaaS), such as Amazon Relational Database Service
(RDS), Microsoft SQL Azure, etc. In general, the use of centralized database
watermarking approaches directly in a distributed setting gives rise to various
challenges, including (1) distribution of data, (2) existence of replication, (3)
preservation of watermarks while performing partitioning and distribution by
third party, (4) robustness, (5) efficient key management, etc. These challenges
become more prominent when data-partition and data-distribution are done by
untrusted third parties (who are different from data owners) as for example in
case of cloud-based database as a service model.

To the best of our knowledge, till now there is no significant contribution in
case of distributed relational database watermarking, especially for distributed
cloud-based database-as-a-service scenarios. Although two related works in this
direction are found in [23, 24], however they have not considered any core prop-
erties of distributed scenario during watermark embedding and detection. More-
over, the proposal does not consider any kind of relational databases and their
partitioning over the distributed environment. Authors in [23], although title
refers, have not addressed any challenge in distributed database scenario.

Motivating from the above concerns, in [1] we have introduced a prelim-
inary proposal on distributed database watermarking that supports database
outsourcing and hybrid partitioning. Although we referred AHK algorithm [9]
as partition-level watermarking algorithm, this may have several limitations:
AHK algorithm marks only one attribute in a tuple at a time. Therefore, with
n vertical partitions, the algorithm should execute the AHK algorithm n times,
allowing only one attribute to get marked in a particular partition. In fact, the

prime challenge here is to decide which particular part of the tuple will belong
to which particular partition.

In this paper, we further strengthen the proposal by designing a novel water-
marking algorithm which overcome the above mentioned limitations. The water-
marking algorithm, in a single execution, can decide to which partition a part of
the tuple actually belongs. In other words, re-executing of the complete water-
marking algorithm is not required for each vertical partition. Additionally, in a
particular partition, we can decide a fraction of attributes (rather than a single
attribute) to be marked randomly. The combination of attributes to be marked
is decided by secret parameter, increasing the robustness of the approach.

In particular, our main contributions in this paper are:

– Proposing efficient watermarking approach for distributed relational databases,
which is generic enough to support database outsourcing and hybrid parti-
tioning.

– Effective treatment to the above-mentioned challenges by watermarking dif-
ferent partitions using different sub-keys and by maintaining a meta-data
about the data distribution, without revealing any secret to the third-party.

– Efficient key management using Mignotte’s k out of n secret sharing scheme
[25], improving the robustness of the scheme.

– The design of embedding and detection phases with the aim of making em-
bedded watermarks partitioning-insensitive. That means, database partition-
ing and its distribution do not disturb any embedded watermark at all.

– Experimental evaluation on benchmark datasets to establish the effectiveness
of our approach in presence of various attacks.

The structure of the paper is as follows: Section 2 discusses various works in liter-
ature related to database watermarking. Sections 3 and 4 describe the proposed
watermark embedding and detection techniques respectively, by illustrating with
suitable examples. Analysis on the experimental evaluation results is reported in
section 5. A detail comparative study w.r.t. the literature is reported in section
6. Finally we conclude our works including the future plans in section 7.

2 Related Works

This section briefly discusses the state-of-the-art on the database watermarking
techniques in the literature.

The idea to secure a database of map information (represented as a graph) by
digital watermarking technique was first given by Khanna and Zane in 2000 [26].
The first watermarking scheme for relational databases was given by Agrawal et
al in 2002 [9]. They embed the watermark in the least significant bits (LSB) of
a particular bit position of some of the selected attribute of some of the selected
tuples based on the secret parameters. Started with these pioneer works, a wide
range of watermarking techniques for centralized database has been proposed
[7–17].

Broadly, the existing approaches are categorized into distortion-based [8–
11, 16, 17] and distortion-free [7, 12–15] watermarking techniques, based upon
whether distortion occurs or not in the underlying data. The distortion intro-
duced when embedding watermarks should not affect the usability of the data.
Authors in [8] have applied data flow analysis to detect variant and invariant
part in the database and subsequently watermarked the invariant part. Authors
in [10] proposed a reversible-watermarking technique which allows to recover the
original data from the distorted watermarked data. Image as watermark is em-
bedded at bit-level in [11]. Approaches in [16, 17] are based on database-content
- the characteristics of database data is extracted and embedded as watermark
into itself. A recent survey by Xie et al. is reported in [27] with special attention
to the distortion-based watermarking. Unlike distortion-based techniques, the
distortion-free watermarking techniques generate watermark from the database
itself. In [13, 20], hash value of the database is extracted as watermark informa-
tion. Approaches in [7, 14, 15] are based on the conversion of database relation
into a binary form to be used as watermark. Authors in [15] used the Abstract
Interpretation for verifying integrity of relational databases. A comprehensive
survey on various types of watermarks and their characteristics, possible attacks,
and the state-of-the-art can be found in [6].

Watermarking schemes can also be classified as robust [28, 29] and fragile
[13, 17, 21, 22]. Generally, the digital watermarking for integrity verification is
called fragile watermarking as compared to robust watermarking for copyright
protection. Recently proposed fragile watermarking techniques include [30, 31].
In [30], the proposed technique establishes a one-to-one relationship between
the secret watermark and the relative order of tuples in a group. Watermark
generation in [31] is based on local characteristics of the relation itself such as
frequencies of characters and text length.

Recently in [32], we have proposed watermarking for large scale relational
databases by adapting the potential of MapReduce [33] paradigm. The experi-
mental results demonstrated a significant improvement in watermarking cost for
distortion free watermarking with respect to the existing sequential algorithms.

To the best of our knowledge, till now there is no significant contribution in
case of watermarking of distributed relational database systems. Although two
related works in this direction are found in [23, 24], however they have not con-
sidered any core properties of distributed scenario during watermark embedding
and detection. To be more precise, the authors in [24] proposed a real-time wa-
termarking technique for digital contents which are distributed among a group
of parties in hierarchical manner. One such example is the distribution of digital
works over the Internet involving several participants from content producers
to distributors to retailers and finally to customers. The main idea is to per-
form multilevel watermarking in order to detect attack possibly occurred at any
particular level. Unfortunately, their proposal has not considered any kind of
relational databases and their partitioning over distributed environment. The
major drawback in [24] is that the data owner has to extract all the watermarks

from top to bottom in the hierarchy during verification. Authors in [23], although
title refers, have not addressed any challenge in distributed database scenario.

3 Watermarking Technique for Distributed Databases

This section proposes a generic watermarking technique for distributed databases.
The proposal is based on the scenario where database owner outsources data to a
third party, assuming that the third party has the required resources to manage
it. Some of the challenges addressed by the proposed technique are: (1) Distribu-
tion of data, (2) Existence of replication, (3) Non-disturbance of the embedded
watermark during partitioning and distribution, (4) Robustness, etc.

The watermark embedding phase consists of the following steps:

3.1 Step 1: Initial exchange of partition information

Data owner will initiate this process to exchange some basic information with
the third party in order to obtain some initial information about the partitioning
and distribution of the database.

Let DB schema be a relational database schema. Let INF be a set of spec-
ifications on the database and its associated applications, which must be pre-
served after partitioning and distribution by a third party. For example, INF
may include confidentiality and visibility constraints [34], user access informa-
tion [2], query behaviours [35], etc. To start this process, the data owner provides
DB schema and INF to the third party. As a result, the third party will send
back to the owner a partition overview of the database. This partition overview
includes information about the set of partitions to be followed in future by the
third party.

Let us formalize the partition overview : Let R schema be a schema of a database
relation belonging to DB schema. The horizontal partitioning of R schema is
formally represented by 〈R schema, fh〉 where fh is a partial function defined
over the set of all attributes A in R schema (i.e. fh : A 9 2Φ where Φ is the
set of all possible well-formed formulas defined on A in first order logic) [36].
In other words, fh which is expressed in first order predicate formulas on at-
tributes, represents properties of database tuples. The horizontal partitioning of
tuples in an instance of R schema is performed based on the satisfiability of fh.
Given Φ = {φ1, ..., φm}, since there are at most 2|Φ| number of horizontal parti-
tions depending on the satisfiability of predicates Φ, we will follow the following
convention: a horizontal partition is represented by h, where h is the decimal
conversion of truth values of {φ1, ..., φm} obtained based on their satisfiability
by its tuples. For example, given two properties φ1 and φ2, if a tuple t satis-
fies ¬φ1 ∧ ¬φ2 then t is assigned to the partition-0 (which is decimal equivalent
of truth value “00”). Similarly, if t satisfies φ1 ∧ ¬φ2 then t is assigned to the
partition-2 (as the decimal equivalent of truth value “10” is 2) and so on. In the

similar way, we also formalize the vertical partitioning as 〈R schema, fv〉, where
℘(A) is the power set of A and fv(A) ⊆ ℘(A).

Observe that the definitions of fh and fv depend on INF in order to sat-
isfy it. Therefore, in general, the hybrid partitioning is formally defined as
〈R schema, fh, fv〉. The partition overview ψ of DB schema satisfying INF is
formally defined as

ψ , { 〈R schema, fh, fv〉 | R schema ∈ DB schema}

This is worthwhile to mention here that our approach is suitable for static par-
titioning and infrequent dynamic partitioning [37], where in the later case a
re-watermarking is necessary to make the detection partition-independent.

Example 1. Let us illustrate this by a running example. Consider the database
relation “T” depicted in Table 1.

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

t1 1 123 100 20 15 16 21 35 11 100 15
t2 2 785 200 29 15 16 28 38 12 150 12
t3 3 456 300 50 11 160 21 35 22 20 13
t4 4 320 400 36 155 167 20 35 21 170 14
t5 5 453 500 40 151 126 27 35 24 160 17

Table 1. Relation “T”

Let us assume that INF consists of the following security specifications:

1. Confidentiality constraints, C ={A2∧A7∧A8}∧{A3∧A9∧A10}. This means
that, none of the partitions should contain either A2, A7 and A8 in combi-
nation or A3, A9 and A10 in combination.

2. Visibility constraints, V = { A1 ∧A2 ∧ A3} ∨{A6 ∧A9 ∧A10}. This means
that, there should be at least one partition that contains either A1, A2 and
A3 in combination or A6, A9 and A10 in combination.

Data owner sends T schema, the schema of relation “T”, along with the set of
specifications INF to the third party. The third party generates the horizontal
partitions F1 and F2 after applying fh : A→ φ whereA= attribute(T schema)
= {A0, A1, ..., A10} and φ : (A3 ≤ average(A3)) ∧ (A8 ≤ average(A8)). Since
we have only one predicate, we can have at most two horizontal partitions F1

and F2, where F1 satisfies φ and F2 doesn’t satisfy φ. Satisfying INF [34], third
party then partitions F1 and F2 vertically by applying a suitable function fv as

fv(F1) = {F11, F12} and fv(F2) = {F21, F22}

where

F11 = 〈{A0, A1, A2, A3, A4, A5}, A3 ≤ average(A3)〉
F12 = 〈{A0, A6, A7, A8, A9, A10}, A8 ≤ average(A8)〉
F21 = 〈{A0, A1, A2, A3, A4, A5}, A3 > average(A3)〉
F22 = 〈{A0, A6, A7, A8, A9, A10}, A8 > average(A8)〉.

Finally, the third party sends back this partition overview ψ = {F11, F12, F21, F22}
to the data owner.

3.2 Step 2: Watermarking by data owner

Given a partition overview ψ (provided by the third party) and a secret key K,
the data owner embeds watermark into the original database relation R. To this
aim, the data owner performs the following two steps:

– Key Management : Obtain a set of n different sub-keys {Ki | i = 1, 2, . . . , n}
from K where n represents the number of partitions obtained from the par-
tition overview ψ (denoted |ψ|), and

– Watermark Embedding : Embed the watermark W into R using n sub-keys.

Let us describe each step in detail:

Key Management. Since our aim is to make the watermark partitioning-
insensitive, the prime challenge here is to select private key K properly and
to watermark the database by using K in such a way that partitioning of the
database R by third party must not affect the embedded watermark. Water-
marking by the data owner considering the future partitioning (yet to be done
by third party) leads to following four possibilities:

– Same Watermark, Same Key: Embedding same watermark into different par-
titions using same key.

– Different Watermark, Same Key: Embedding different watermarks into dif-
ferent partitions using same key.

– Same Watermark, Different Key: Embedding same watermark into different
partitions using different keys.

– Different Watermark, Different Key: Embedding different watermarks into
different partitions using different keys.

In first and second case, if the watermark is revealed at one site, the key will
be exposed and watermarks at other sites also become vulnerable. In the last
case, applying different watermarks along with different keys will be a tedious
job. Therefore, in our approach, we consider the third scenario, i.e. “Same Wa-
termark, Different Key”, in which if somehow the watermark is extracted at one
site, it will not expose the watermarks embedded into other database-partitions
at other sites. Moreover, this serves the purpose of making watermark detection
partition-independent as well. In particular, to achieve our objective, we consider
k out of n secret sharing schemes [25, 38].

Various k out of n secret sharing schemes are already proposed in the liter-
ature such as: Shamir’s scheme [38], Mignotte’s scheme [25], etc. It states that
given a secret K and n shares, any set of k shares acts as the threshold from
which the secret can be recovered. In other words, any set of (k - 1) shares is not
enough to reveal K. However in Shamir’s scheme, the attacker gets a range of
numbers to guess about the secret key even with (k - 1) keys. In our approach,

Algorithm 1 KEY-COMPUTATION

Input : Partition overview ψ, Secret key K
Output : Shares {Ki | i = 1, 2, . . . , n} of the secret key K

1: Let n = |ψ| and k be a threshold, where |ψ| represents the number of partitions.
2: Choose n pairwise co-prime integers m1,m2, ...,mn|(m1 × ...×mk) > (mn−k+2 ×
...×mn).

3: Select secret key K such that β < K < α where α = (m1 × ... × mk) and β =
(mn−k+2 × ...×mn).

4: for each i ∈ 1 to n do
5: Compute shares of secret key as Ki = K mod mi

6: end for
7: Return {Ki | i = 1, 2, . . . , n}.

we use Mignotte’s scheme as this leads to small and compact shares [39]. Al-
gorithm 1 provides detail steps of the Mignotte’s scheme to obtain n shares of
secret key. Here n = |ψ| indicates the number of partitions. We have a secret
key K which is partitioned into different shares, {Ki | i = 1, 2, . . . , n} that are
used in watermarking of various partitions. Observe that this reduces the chal-
lenges in managing and distributing large number of independent keys for all
database-partitions in distributed settings.

Example 2. Let us illustrate this using the running example. Consider the par-
tition overview ψ = {F11, F12, F21, F22} in Example 1. We require four differ-
ent keys for watermarking of these four partitions. Considering the threshold k
equal to 3, the owner has to assume four pairwise co-prime integers such that
the product of k smallest numbers should be greater than the product of k - 1
biggest numbers. Suppose they are: m1 = 7, m2 = 17, m3 = 3 , m4 = 19. Since
m1×m2×m3 = 357 and m3×m4 = 57, it satisfies the condition m1×m2×m3 >
m3×m4. A secret K should be chosen between the range of these two products,
let it be K = 131. Secret shares are calculated for all n by using Ki = K mod mi

as follows:

K1 = K mod m1 = 131 mod 7 = 5

K2 = K mod m2 = 131 mod 17 = 12

K3 = K mod m3 = 131 mod 3 = 2

K4 = K mod m4 = 131 mod 19 = 17

These set of secret shares or sub-keys K1,K2,K3,K4 will be used to watermark
the relation T at partition-level based on partition overview ψ.

In the rest of the paper, we use the terms “secret share” and “sub-key” synony-
mously.

Watermark Embedding. In this subsection, we present watermark embedding
step by the data owner using partition overview and the set of sub-keys. The
primary objective here is to embed same watermark on multiple partitions using

different sub-keys. Let us formalize the distributed watermark embedding, as
below:

DistWM Embed(R,ψ,W,K)

=
⋃

i∈1...|ψ|

WM Embed(Ri,W,Ki)

=
⋃

i∈1...|ψ|

Riw

=Rw

Data owner watermarks the database relationR using shares {Ki | i = 1, 2, ..., |ψ|},
obtained from the secret key K in Algorithm 1. Suppose Ri represents ith par-
tition in the partition overview ψ. Observe that Ri is watermarked using the
share Ki. Once watermarked, data owner then outsources all the watermarked
relations Rw in the database to the third party.

We formalize our watermark embedding algorithm in Algorithm 2. The de-
scriptions of various notations to be used in the algorithms are depicted in Table
2. Observe that all these parameters are secret to the data owner.

Symbol Description
γ fraction of tuples marked during embedding
β no of bits to be extracted to make the watermark
` no of attributes available for marking
η fraction of attributes to be marked
α detectability level
ξ no. of least significant bit available for marking in an attribute.

Table 2. Notations used in Algorithm 2

Algorithm 2 takes database relation R, partition overview ψ and secret key
shares (in matrix form) as input, and gives watermarked relation Rw as output.
Step 2 in the algorithm checks if a tuple should be marked or not. A tuple t
is considered for embedding, if modulus of the hash of t’s primary key by γ
is zero. A suitable example of hash function is MD5 [40]. Step 3 calls CHECK

function to determine the horizontal partition in which a tuple t belongs to.
Given a set of predicates φ1, . . . , φm, the CHECK function checks which predicates
in first order logic are satisfied by t and returns a horizontal partition id h
that is the decimal conversion of truth values of {φ1, ..., φm} based on their
satisfiability. After getting the horizontal partition id h, the embedding key Kh,v

for each vertical partition VPv ∈ ψ is computed at Step 5 from the key matrix
K2|φ|×|VP|. In Step 6, the owner compress its original watermark, which is to be
embedded, in a length of β bits based on the hash-based computation. Finally,
the embedding procedure Apply Watermark is called to watermark the partition
by its corresponding sub-key.

The Apply Watermark procedure takes as input a secret key K, watermark
wm and the list of attribute values belonging to a particular partition. In Steps 24
and 25, the number of attributes n to be marked is calculated by multiplying the

Algorithm 2 WM Embed
Input : Database relation R, Partition overview ψ, Secret keys matrix K

2|φ|×|VP|
Output : Watermarked relation Rw
1: for each tuple t ∈ R do
2: if hash(t.PK) mod γ = 0 then /* t.PK is the primary key of t */
3: Horizontal partition id h = CHECK(t, 〈φ1, ..., φm〉)
4: for each vertical partition VPv ∈ VP do
5: Watermark key wmkey = Kh,v
6: mark = compress(hash(owner′s watermark), β)
7: List L = [t.PK, t.Ax, ..., t.Ay], ∀Ax, ..., Ay ∈ VPv
8: Apply Watermark(wmkey , mark, L)
9: end for
10: end if
11: end for

12: function CHECK(tuple t, properties 〈φ1, ..., φm〉)
13: Create a boolean array b of length m
14: for i = 1; i <= m; i = i+ 1 do
15: if t |= φi then
16: b[i] = 1
17: else
18: b[i] = 0
19: end if
20: end for
21: return decimal(b)
22: end function

23: procedure Apply Watermark(key K, watermark wm, L = [t.PK, t.Ax, ..., t.Ay])
24: no of attributes available for marking, ` = |L| − 1 /* primary key t.PK is unavailable for

marking */
25: no of attributes to be marked, n = d`×ηe /* η is the fraction of attributes to be marked

*/

26: total number of attribute combinations for embedding, c =
(`
n

)
27: the combination of attributes to be marked, q = hash(K ‖ t.PK) mod c /*each combi-

nation contains the list of n attributes */

28: for each attribute a ∈ qth combination do
29: bit index b= hash(K ‖ t.PK) mod ξ

30: Replace bth LSB bit of a with bth bit of wm
31: end for
32: end procedure

number of attributes ` available for watermarking and the predefined fraction η
of attributes to be marked. In order to randomize the set of attribute values to be
marked for different tuples, Step 26 computes the total number of combination of
attributes. For example, if the total number of attributes available for marking
(i.e., `) is 5 and we want to mark 30% (i.e., η = 0.3) of attributes, then the
number of attributes to be marked n = d` × ηe = 2. Therefore, total number
of combinations each containing 2 attributes out of 5 is

(
`
n

)
=
(

5
2

)
= 10. Step 27

chooses qth combination, and in Steps 28-31 all attributes in qth combination are
marked by replacing their bth least significant bit with the bth least significant bit
of the watermark wm, where b is the bit index computed by modulus operation
of primary key hash value with the number of least significant bit available for
marking, ξ.

A situation may arise where partition size is too small. In such case, the
tuples in the partition can be divided into multiple groups and similarly the

watermark of larger length can be divided into multiple parts, thus enabling to
embed one part in one group of tuples.

Example 3. Consider the running example. Given ψ = {F11, F12, F21, F22} and
the secret sub keys K1 = 5,K2 = 12,K3 = 2,K4 = 17. These keys are stored
in 2×2 matrix {{5, 12}, {2, 17}}. Given the partition overview ψ computed
in Example 1, its clear that total number of horizontal partition is two and
vertical partitions is also two. For tuple t1, the CHECK function returns h = 0
because first tuple doesn’t satisfy the predicate φ : (A3 ≤ average(A3))∧ (A8 ≤
average(A8)). Therefore for vertical partition {A0, A1, A2, A3, A4, A5}, secret
key 5 will be used for watermark embedding. Let us assume that the watermark
mark = “10” and List L = [1, 123, 100, 20, 15, 16]. APPLY WATERMARK procedure
determines the number of attributes available for marking ` = |L| − 1 = 6 - 1
= 5 (A0 is the primary key and hence unavailable for watermarking). Suppose
η = 0.3, then number of attributes to be marked is n = d`× ηe = d5× 0.3e = 2.
Since we are having 5 attributes, out of which 2 have to be marked, hence the
number of possible combinations of 2 attributes is c =

(
5
2

)
= 10. Assuming that

the 1st combination containing 〈1, 2〉 is chosen by step 27. That is, attributes A1

and A2 need to be marked. Let ξ = 2 and the bit index b computed for these
attributes are 0 and 1 respectively. For embedding the watermark wm, data
owner replaces the 0th and 1st LSB bit of A1 (=123) and A2 (=100) respectively
by the corresponding LSB bit of wm, resulting into 122 and 100 respectively.
Similarly another vertical partition {A0, A6, A7, A8, A9, A10} in t1 is also marked
following the similar steps. This continues for the remaining t2, t3, t4 and t5.

The watermarked relation is shown in Table 3. Data represented in bold
denotes watermarked values. Data owner outsources this watermarked relation
to the third party for partitioning and distribution.

A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

t1 1 122 100 20 15 16 21 36 11 101 15
t2 2 785 200 25 14 16 28 39 12 146 12
t3 3 456 300 50 9 160 21 35 22 22 13
t4 4 322 401 36 155 167 20 34 22 170 14
t5 5 453 500 40 151 126 27 35 27 160 17

Table 3. Watermarked Relation “Tw”

3.3 Step 3: Partitioning and distribution by third party

Once the third party receives the watermarked database relation Rw from the
data owner, the third party partitions and distributes it as per the partition
overview ψ computed before. A partition may be either a subset of attributes
(vertically partitioned) or a subset of tuples with common properties (horizon-
tally partitioned) or both (hybrid partitioning). In addition, the third party
maintains a metadata table that contains information about the data distri-
bution over the servers. The metadata information consists of partition ID Pi,
property description of the data in the partition in the form of first-order for-
mula, the server ID Sj where partition Pi is located, etc.

Example 4. Considering the partition overview ψ, third party first applies func-
tion fh to horizontally partition “Tw” relation into partitions F1 and F2 and then
fv to vertically partition into F11, F12, F21, F22. The functions fh and fv are the
same functions as computed during partition overview creation. The resulting
watermarked partitions (shown in Table 4) are finally distributed to different
servers. The metadata for our running example is shown in Table 5.

A0 A1 A2 A3 A4 A5

1 122 100 20 15 16
2 785 200 25 14 16

(a) F11

A0 A6 A7 A8 A9 A10

1 21 36 11 101 15
2 28 39 12 146 12

(b) F12

A0 A1 A2 A3 A4 A5

3 456 300 50 9 160
4 322 401 36 155 167
5 453 500 40 151 126

(c) F21
A0 A6 A7 A8 A9 A10

3 21 35 22 22 13
4 20 34 22 170 14
5 27 35 27 160 17

(d) F22

Table 4. Partitioning and distribution by third party

Partition Partition Description Server
ID Schema Properties ID
P1 {A0, A1, A2, A3, A4, A5} A3 ≤ avg(A3) S3

P2 {A0, A6, A7, A8, A9, A10} A8 ≤ avg(A8) S1

P3 {A0, A1, A2, A3, A4, A5} A3 > avg(A3) S2

P4 {A0, A6, A7, A8, A9, A10} A8 > avg(A8) S4

Table 5. Metadata

4 Partition-level Watermark Detection

The data owner initiates the detection process if she suspects any of the attacks
on her database partitions or on part of it. The main issue here is to know the
actual key that was used at the time of watermark embedding. For this purpose,
the data owner communicates with the third party to obtain a partition ID Pi
and the corresponding server ID Sj based on the matching of the suspicious
database data with the property description of Pi in the metadata table.

Once the partition ID Pi is obtained, the owner will use the Mignotte’s
scheme [25] to obtain the key Ki from secret key K and ith co-prime integer mi.
Algorithm 3 formalizes the watermark detection phase. It takes the suspicious
partition F and the secret key Ki as the input, and gives as output the reasoning
whether verification is successful or not. Step 3 checks whether the tuple was
marked at the time of embedding. Step 4 increments the value of total count,
i.e. the total number of tuples marked.

Steps 5-12 follow similar steps as in the case of embedding algorithm and
identify the marked positions in the tuples to extract the embedded watermark
bits. On matching the extracted watermark with the original watermark in step
13, the match count is incremented in the next step. Finally step 19 checks
whether the match count crosses the threshold τ , and if so, the watermark de-
tection is considered as successful.

Algorithm 3 WM Detect
Input : suspicious partition F , secret key Ki
Output : detection result either as “success” or “fail”

1: total count = match count = 0
2: for each tuple t

′
∈ F do

3: if hash(t.PK) mod γ = 0 then
4: total count = total count + 1

5: `
′

= (no. of attributes in F) - 1 /* t.PK is unavailable for marking */

6: n
′

= d`
′
× ηe // η is the fraction of attributes marked during embedding

7: total number of attribute combinations, c
′

=
(l′
n
′
)

8: q
′

= hash(Ki ‖ t.PK) mod c
′

/* each combination contains the list n attributes */

9: for each attribute a ∈ q
′
th combination do

10: bit index b= hash(Ki ‖ t.PK) mod ξ

11: bth LSB bit of W
′

= bth LSB bit of a
12: end for
13: if (W

′
= W) then

14: match count = match count + 1
15: end if
16: end if
17: end for
18: threshold τ = (total count × α) /* α is the detectability level */
19: if match count ≥ τ then
20: verification = “success”
21: else
22: verification = “fail”
23: end if

Example 5. In the running example let us consider the partition F12 in Table
4 as a suspicious one. The data owner will ask third party for the database
partition ID (Pi) and the corresponding server ID (Sj). Third party refers to the
meta-data in Table 5 to compare the property of suspicious data and replies back
with the information Pi = 2 and Sj = S4 to data owner. Now the data owner
will get the corresponding ith co-prime number mi (i.e. m2) and obtains Ki (i.e.
K2) following the Algorithm 1. From the running example 2, K2 = K mod m2

= 131 mod 17 = 12. To detect the watermark, the data owner invokes Algorithm
3 passing suspicious partition F12 and the key K2 = 12 as inputs. Using secret
parameters γ, η, let the data owner computes the marked combination in steps
2-8 as A7, A9. From these two attribute values, owner will extract two bits ‘1’ and
‘0’ and reconstruct the watermark W

′
= “10”. As W = W ′, match-count will

be increased by 1. Finally if the number of match-count crosses the threshold,
the detection is successful.

As an alternative, watermark can also be detected by the application of query
preserving approach [35]. Since all servers are equally likely to be suspect, the
owner can send an identical query to all the servers. Based on the responses, data
owner assigns probabilities to the servers of being suspicious. Further based on
a fixed threshold probability, the data owner will get a set of suspicious server
IDs. Now the data owner asks the third party for the database partition IDs
(Pi’s) corresponding to those suspicious servers. Third party then refers to the
metadata and replies with a set of corresponding database partition IDs without
accessing the schema and properties stored in it. After getting the database

partition IDs, owner will get the corresponding key Ki from algorithm 1. Owner
now hit and try among these keys to extract the watermark from the suspicious
partition.

Example 6. After getting the suspicious partition F12 in Table 4, data owner
generates a query and sends it to all the servers. Based on the responses from
the servers, let the probabilities assigned to servers S1, S2, S3, S4 are 0.6, 0.4, 0.5,
0.8 respectively. Assuming the threshold probability as 0.6, the possible suspects
are S1 and S4, the data owner asks for the corresponding database partition IDs
from third party. Subsequently the third party refers to the metadata and replies
back the database partition IDs, i.e. 4 and 2. Now the owner will get keys K4

and K2 as follows: K4 = K mod m4 = 131 mod 19 = 17, K2 = K mod m2

= 131 mod 17 = 12. Owner now hit and try among these keys to extract the
watermark from the suspicious partition F12.

5 Experimental Analysis

We have performed experiments on a benchmark dataset, namely Forest Cover
Type data set2. This dataset contains 581012 tuples, each having 10 integer
attributes, 1 categorical attribute, and 44 boolean attributes.

No of tuples |ψ| ` ξ γ Total count Time (msec)
581012 2 5 3 50 11851 429396
581012 4 5 3 50 11851 381082
581012 6 5 3 50 11851 447483
581012 8 5 3 50 11851 490723

Table 6. Results of Watermark Embedding

Partition Updation Detection
partition No of Percent Total count Match count τ Time

Detect
tuples updated (msec)

partition 1 581012 0 11851 11851 3555 207675 X
30 11099 196237 X
60 10635 213598 X
90 9813 218389 X
99 9469 197051 X

partition 2 581012 0 11851 11851 3555 264892 X
30 10965 256773 X
60 10311 234568 X
90 9707 201922 X
99 9400 278427 X

Table 7. Detection after partitioning and update attack in case of 2 partitions

We have added an extra attribute id to the dataset which serves as primary
key, and used all 10 numerical attributes in our experiments. We implemented
our algorithms in Java and executed on the system featured with Intel Core i3
processor (2.50 GHz), Windows Operating System, and 4 GB RAM.

In the beginning, we watermark the original dataset using Algorithm 2 with
the secret keys obtained from Mignotte’s scheme [25] as depicted in Algorithm

2 University Of California-Irvine KDD Archive: kdd.ics.uci.edu/databases/

covertype/covertype.html

Partition Deletion Detection
partition No of tuples Percent Total count Match count τ Time

Detect
after deletion deleted (msec)

partition 1 581012 0 11851 11851 3555 207675 X
406710 30 8330 195313 X
232406 60 4654 88920 X
58103 90 1185 24504 ×
5812 99 137 2534 ×

partition 2 581012 0 11851 11851 3555 264892 X
406710 30 8330 136118 X
232406 60 4773 87027 X
58103 90 1221 24504 ×
5812 99 140 2534 ×

Table 8. Detection after partitioning and deletion attack in case of 2 partitions

Partition Updation Detection
partition No of Percent Total count Match count τ Time

Detect
tuples updated (msec)

partition 1 475050 0 9802 9802 2940 201103 X
30 9231 188743 X
60 8746 185909 X
90 8230 215241 X
99 8030 201969 X

partition 2 475050 0 9802 9802 2940 159107 X
30 9152 195906 X
60 8669 181189 X
90 8068 219924 X
99 7858 192249 X

partition 3 105962 0 2049 2049 614 46215 X
30 1878 39467 X
60 1823 40348 X
90 1669 41553 X
99 1523 39351 X

partition 4 105962 0 2049 2049 614 40439 X
30 1883 38346 X
60 1847 37627 X
90 1684 39729 X
99 1542 37283 X

Table 9. Detection after partitioning and update attack in case of 4 partitions

Partition Deletion Detection
partition No of tuples Percent Total count Match count τ Time

Detect
after deletion deleted (msec)

partition 1 475050 0 9802 9802 2940 201103 X
332536 30 6858 121951 X
190021 60 3922 71518 X
47506 90 995 22023 ×
4752 99 105 1888 ×

partition 2 475050 0 9802 9802 2940 159107 X
332536 30 6855 118881 X
190021 60 3925 69884 X
47506 90 998 20360 ×
4752 99 102 1919 ×

partition 3 105962 0 2049 2049 614 46215 X
74175 30 1445 31315 X
42386 60 834 21066 X
10598 90 221 4513 ×
1061 99 34 652 ×

partition 4 105962 0 2049 2049 614 40439 X
74175 30 1448 30403 X
42386 60 830 18176 X
10598 90 228 4236 ×
1061 99 39 586 ×

Table 10. Detection after partitioning and delete attack in case of 4 partitions

1, by varying the number of partitions (i.e., 2, 4, 6, and 8) obtained by applying
both horizontal and vertical partitioning.

The fraction of attributes to be marked in a partition, η is taken as 0.5,
i.e. 50% of the attributes available for marking are actually marked. Then, we
simulate update and deletion attacks on various partitions. In the detection pro-

0 2 4 6 8
0

30

60

100

120

Number of partitions

D
et

ec
ta

b
il

it
y

ra
te

(%
)

0% updation

30% updation

60% updation

90% updation

99% updation

Fig. 1. Watermark detection rate after update at-
tack

0 2 4 6 8
0

30

60

100

120

Number of partitions

D
et

ec
ta

b
il

it
y

ra
te

(%
)

0% deletion

30% deletion

60% deletion

90% deletion

99% deletion

Fig. 2. Watermark detection rate after delete attack

Partition Updation Detection
partition No of Percent Total count Match count τ Time

Detect
tuples updated (msec)

partition 1 105963 0 2050 2050 615 59568 X
30 1941 39518 X
60 1880 38871 X
90 1743 41046 X
99 1732 40563 X

partition 2 105963 0 2050 2050 615 35941 X
30 1935 40411 X
60 1850 40839 X
90 1731 43736 X
99 1663 47170 X

partition 3 137742 0 2753 2753 826 60376 X
30 2611 53781 X
60 2496 52510 X
90 2320 50883 X
99 2254 48535 X

partition 4 137742 0 2753 2753 826 53254 X
30 2612 46241 X
60 2488 48631 X
90 2322 47973 X
99 2254 48751 X

partition 5 337307 0 7048 7048 2114 121809 X
30 6573 120490 X
60 6221 137168 X
90 5843 126628 X
99 5706 116504 X

partition 6 337307 0 7048 7048 2114 113988 X
30 6546 118265 X
60 6130 123761 X
90 5751 150714 X
99 5649 144750 X

Table 11. Detection after partitioning and update attack in case of 6 partitions

cess, we use same set of secret parameters as that of embedding phase. We have
taken a fixed detectability level α = 0.3 to measure the success detectability,
i.e. if match count is greater than threshold τ (30% of the total count) then
we consider the detection as successful. Table 6 depicts the watermark embed-
ding results (watermark embedding time in millisecond) for various number of
partitions in partition-overview.

Let us now discuss the watermark detection after update and delete attacks.
For all partitions, we have performed the experiments on Count = 581012 tuples
by taking γ = 50. Let us first define detectability rate:

detectability rate = (Match count/Total count) × 100

The results of detection process after update attack in case of 2 partitions is
shown in Table 7.

Partition Deletion Detection
partition No of Percent Total count Match count τ Time

Detect
tuples deleted (msec)

partition 1 105963 0 2050 2050 615 59568 X
74176 30 1443 33902 X
42387 60 835 17680 X
10598 90 220 4140 ×
1061 99 33 463 ×

partition 2 105963 0 2050 2050 615 35941 X
74176 30 1443 26535 X
42387 60 835 18117 X
10598 90 220 4609 ×
1061 99 33 585 ×

partition 3 137742 0 2753 2753 826 60376 X
96421 30 1949 35758 X
55098 60 1156 23975 X
13776 90 290 5979 ×
1379 99 26 679 ×

partition 4 137742 0 2753 2753 826 53254 X
96421 30 1952 38365 X
55098 60 1148 23478 X
13776 90 281 5589 ×
1379 99 26 464 ×

partition 5 337307 0 7048 7048 2114 121809 X
236116 30 4880 85868 X
134924 60 2814 51280 X
33732 90 696 15996 ×
3375 99 72 1439 ×

partition 6 337307 0 7048 7048 2114 113988 X
236116 30 4872 81899 X
134924 60 2809 47013 X
33732 90 694 13973 ×
3375 99 72 1583 ×

Table 12. Detection after partitioning and delete attack in case of 6 partitions

2 4 6 8
0

1 · 105

2 · 105

Number of partitions

T
im

e
(m

il
li
se

c
o
n
d
)

0% updation

30% updation

60% updation

90% updation

99% updation

Fig. 3. Average detection time after update attack

Partition Updation Detection
partition No of Percent Total count Match count τ Time

Detect
tuples updated (msec)

partition 1 189609 0 3997 3997 1199 69628 X
30 3811 65827 X
60 3596 66698 X
90 3396 68332 X
99 3314 63773 X

partition 2 189609 0 3997 3997 1199 68353 X
30 3762 68743 X
60 3547 74104 X
90 3327 67199 X
99 3229 63773 X

partition 3 137750 0 2761 2761 828 50717 X
30 2974 47441 X
60 2518 49458 X
90 2353 49884 X
99 2302 48918 X

partition 4 133750 0 2761 2761 828 49279 X
30 2644 49108 X
60 2501 49194 X
90 2351 53799 X
99 2292 49842 X

partition 5 147691 0 3044 2997 913 53668 X
30 2901 53158 X
60 2736 59440 X
90 2557 56258 X
99 2491 57356 X

partition 6 147691 0 3044 2994 913 53468 X
30 2882 51086 X
60 2684 51199 X
90 2516 55550 X
99 2435 66929 X

partition 7 105962 0 2049 2049 614 37305 X
30 1985 35643 X
60 1866 44264 X
90 1765 48460 X
99 1702 55030 X

partition 8 105962 0 2049 2049 614 38014 X
30 1947 38188 X
60 1884 39523 X
90 1779 39979 X
99 1719 39089 X

Table 13. Detection after partitioning and update attack in case of 8 partitions

2 4 6 8
0

1 · 105

2 · 105

Number of partitions

T
im

e
(m

il
li
se

c
o
n
d
)

0% deletion

30% deletion

60% deletion

90% deletion

99% deletion

Fig. 4. Average detection time after delete attack

The watermark detectability rate after update attack is depicted in Figure
1. It is to be noted that “Total count” denotes the number of tuples marked
during embedding before updation and “Match count” represents the number of
times we are able to extract our embedded watermark successfully from various
partitions after update attack. We have taken the results by randomly updating

Partition Deletion Detection
partition No of Percent Total count Match count τ Time

Detect
tuples deleted (msec)

partition 1 189609 0 3997 3997 1199 69628 X
132728 30 2764 54844 X
75845 60 1610 30165 X
18962 90 395 8098 ×
1898 99 26 701 ×

partition 2 189609 0 3997 3997 1199 68353 X
132728 30 2760 48426 X
75845 60 1608 28362 X
18962 90 395 7749 ×
1898 99 26 649 ×

partition 3 137750 0 2761 2761 828 50717 X
96426 30 1945 38874 X
55101 60 1110 27907 X
13776 90 295 5809 ×
1379 99 26 554 ×

partition 4 133750 0 2761 2761 828 49279 X
96426 30 1946 36597 X
55101 60 1095 22382 X
13776 90 298 6022 ×
1379 99 25 632 ×

partition 5 147691 0 3044 2997 913 53668 X
103385 30 2121 43292 X
59078 60 1207 24967 X
14771 90 302 6245 ×
1478 99 33 786 ×

partition 6 147691 0 3044 2994 913 53468 X
103385 30 2117 39825 X
59078 60 1204 22150 X
14771 90 302 6175 ×
1478 99 33 632 ×

partition 7 105962 0 2049 2049 614 37305 X
74175 30 1445 29214 X
42386 60 834 19664 X
10598 90 221 4725 ×
1061 99 34 570 ×

partition 8 105962 0 2049 2049 38014 614 X
74175 30 1445 27050 X
42386 60 834 16519 X
10598 90 221 4628 ×
1061 99 34 548 ×

Table 14. Detection after partitioning and deletion attack in case of 8 partitions

30%, 60%, 90% and 99% tuples of each partition. We can observe that, setting α
to 0.3, even after updating 99%, we are able to detect our embedded watermark
in some cases. However, owner can tune this value to make a trade off between
false positives and false negatives.

The detection results after delete attack in case of 2 partitions is depicted in
Table 8. Similarly the detection results after update and delete attacks in case
of 4 partitions are shown in Table 9 and Table 10 respectively. Tables 11 and
12 depict the detection results for 6 partitions after update attack and delete
attack respectively. Similarly Table 13 and Table 14 depict the detection results
for 8 partitions after update attack and delete attack respectively.

Similarly the watermark detection rate after delete attack is shown in Figure
2. The results have been taken by randomly deleting 30%, 60%, 90% and 99%
tuples of each partition. The average detection times for all partitions after up-
date attack and delete attacks are shown in Figure 3 and Figure 4.

Figures 5, 6, 7 and 8 represent the detection rate for 2, 4, 6 and 8 partitions
respectively.

Based on these experimental results, we establish the following observations:

0 30 60 90 99
0

20

40

60

80

100

Attack percentage

D
et

ec
ta

b
il

it
y

ra
te

(%
)

Delete attack

Update attack

Fig. 5. Percentage of detection for 2 partition

0 30 60 90 99
0

20

40

60

80

100

Attack percentage

D
et

ec
ta

b
il

it
y

ra
te

(%
)

Update attack

Delete attack

Fig. 6. Percentage of detection for 4 partition

0 30 60 90 99
0

20

40

60

80

100

Attack percentage

D
et

ec
ta

b
il

it
y

ra
te

(%
)

Update attack

Delete attack

Fig. 7. Percentage of detection for 6 partition

0 30 60 90 99
0

20

40

60

80

100

Attack percentage

D
et

ec
ta

b
il

it
y

ra
te

(%
)

Update attack

Delete attack

Fig. 8. Percentage of detection for 8 partition

– The watermark is successfully detected even after the attacker updates 99%
of the tuples in some cases, considering α = 0.3. Therefore, detection success
will be increased as we decrease α.

– For 0% updation or deletion, we have 100% detectability rate for all parti-
tions, which is always true.

– Figure 1 and 2 show that detectability rate increases as we increase the
number of partitions.

– Figure 1 and 2 show that detectability rate decreases as we increase the
percentage of updation and deletion.

– It is clear from Figure 3 and Figure 4 that for the same percentage of up-
dation or deletion, the average detection time decreases as we increase the
number of partitions.

– According to Figures 5, 6, 7 and 8, we observe that the detectability rate
decreases on increasing the percentage of updation and deletion.

6 Discussions w.r.t. the Literature

A wide range of watermarking techniques [7–17] for centralized database has
been proposed. Unlike all these, our scenario is based on the cloud-based dis-

tributed database system where data owners outsource their databases to a
cloud-based service provider who eventually partitions and distributes them
among multiple servers interconnected by a communication network.

In the context of distributed database watermarking, let us briefly describe
two existing approaches found in the literature:

El-Bakry et al. [23] The proposed technique, for the purpose of watermarking,
changes the structure of relational database schema by adding a new record.
This new record is generated by applying a secret function on the original data
of each field with the help of a secret key. Though the title refers, they have
not addressed any challenge in distributed database scenario. In fact, the major
technical contributions have not considered any distributed database scenario at
all.

Razdan et al. [24] The watermarking technique is proposed for digital contents
which are distributed among a group of parties in hierarchical manner. For exam-
ple, distribution of digital works over the internet involving several participants
from content producers to distributors to retailers and finally to customers. The
proposed technique inserts unique watermarks at each transaction stage to pro-
vide a complete audit-trail. This hierarchical watermarking of digital contents
imposes difficulties during the watermark extraction process as the data owner
has to extract all the watermarks from top to bottom.

This is worthwhile to mention here that the authors in [23, 24], however, have
not considered any core properties of distributed scenario during watermark
embedding and detection. Their proposals do not even consider any kind of
database partitioning over the distributed environment.

Advantages of our approach: In this paper, we have proposed a partition-independent
database watermarking approach in distributed environment. Since we have em-
bedded same watermark in all the database partitions using different key, the
vulnerability of different partitions is minimized. Even if somehow the water-
mark at one partition is revealed, it will not affect the watermarks embedded in
other partitions. The watermark detection can be done on each partition inde-
pendently. For the purpose of key management we have used k-out of-n secret
sharing algorithm [25] which makes our watermark more robust.

Disadvantages of our approach: The initial exchange of partition information
between the data owner and the third party service provider induces an over-
head in our proposal. The proposed framework relies on the assumption that the
service provider always agrees to the previously computed partition-overview at
a later stage of partitioning and distribution.

Despite these overheads, our watermarking approach best suites in the cloud
computing scenario where data owners outsource their watermarked databases
to the third party service providers. The key management scheme makes the de-
tection process partition independent and also an attack at one partition doesn’t

affect the other partitions at all. The experimental analysis shows that detectabil-
ity rate increases as we increase the number of partitions since the match count
also increases. As obvious, the detectability rate decreases as we increase the per-
centage of updation and deletion. For 0% updation or deletion, we have 100%
detectability rate for all partitions, which is always true.

7 Conclusions and Future plan

In this paper, we proposed a novel watermarking technique for distributed databases
that supports hybrid partitioning. The algorithms are designed to be partitioning-
insensitive. The key management scheme that we have considered makes the
watermark more robust against various attacks, as if anyhow some partitions
are attacked it will not affect any watermark in other database-partitions. The
experimental results show the strength of our approach by analyzing the de-
tection rate with respect to random modification and deletion attack. To the
best of our knowledge, this is the first work on watermarking of databases in
distributed setting that supports database outsourcing and its partitioning and
distribution. The future work aims to extend it to the case of big data in cloud
computing environment.

ACKNOWLEDGMENT

This work is partially supported by the Council of Scientific and Industrial Re-
search (CSIR), India.

References

1. Rani, S., Koshley, D.K., Halder, R.: A watermarking framework for outsourced
and distributed relational databases. In: International Conference on Future Data
and Security Engineering, Springer (2016) 175–188

2. Özsu, M.T., Valduriez, P.: Principles of distributed database systems. Springer
Science & Business Media (2011)

3. Amazon Relational Database Service. https://aws.amazon.com/rds/.

4. Microsoft Azure SQL Database. https://azure.microsoft.com/en-in/

services/sql-database/

5. Curino, C., Jones, E.P., Popa, R.A., Malviya, N., Wu, E., Madden, S., Balakrish-
nan, H., Zeldovich, N.: Relational cloud: A database-as-a-service for the cloud.
(2011)

6. Halder, R., Pal, S., Cortesi, A.: Watermarking techniques for relational databases:
Survey, classification and comparison. J. UCS 16(21) (2010) 3164–3190

7. Bhattacharya, S., Cortesi, A.: A generic distortion free watermarking technique for
relational databases. In: International Conference on Information Systems Security,
Springer (2009) 252–264

8. Rani, S., Kachhap, P., Halder, R.: Data-flow analysis-based approach of database
watermarking. In: Advanced Computing and Systems for Security. Springer (2016)
153–171

9. Agrawal, R., Haas, P.J., Kiernan, J.: Watermarking relational data: framework,
algorithms and analysis. The VLDB journal 12(2) (2003) 157–169

10. Gupta, G., Pieprzyk, J.: Database relation watermarking resilient against sec-
ondary watermarking attacks. In: International Conference on Information Sys-
tems Security, Springer (2009) 222–236

11. Zhou, X., Huang, M., Peng, Z.: An additive-attack-proof watermarking mechanism
for databases’ copyrights protection using image. In: Proceedings of the 2007 ACM
symposium on Applied computing, ACM (2007) 254–258

12. Halder, R., Cortesi, A.: A persistent public watermarking of relational databases.
In: ICISS, Springer (2010) 216–230

13. Li, Y., Guo, H., Jajodia, S.: Tamper detection and localization for categorical data
using fragile watermarks. In: Proceedings of the 4th ACM workshop on Digital
rights management, ACM (2004) 73–82

14. Li, Y., Deng, R.H.: Publicly verifiable ownership protection for relational
databases. In: Proceedings of the 2006 ACM Symposium on Information, com-
puter and communications security, ACM (2006) 78–89

15. Bhattacharya, S., Cortesi, A.: Distortion-free authentication watermarking. In:
International Conference on Software and Data Technologies, Springer (2010) 205–
219

16. Zhang, Y., Niu, X., Zhao, D., Li, J., Liu, S.: Relational databases watermark
technique based on content characteristic. In: Innovative Computing, Information
and Control, 2006. ICICIC’06. First International Conference on. Volume 3., IEEE
(2006) 677–680

17. Guo, H., Li, Y., Liu, A., Jajodia, S.: A fragile watermarking scheme for detecting
malicious modifications of database relations. Information Sciences 176(10) (2006)
1350–1378

18. Pournaghshband, V.: A new watermarking approach for relational data. In: Pro-
ceedings of the 46th annual southeast regional conference on XX, ACM (2008)
127–131

19. Kamran, M., Suhail, S., Farooq, M.: A robust, distortion minimizing technique for
watermarking relational databases using once-for-all usability constraints. IEEE
Transactions on Knowledge and Data Engineering 25(12) (2013) 2694–2707

20. Bhattacharya, S., Cortesi, A.: A distortion free watermark framework for relational
databases. In: ICSOFT (2). (2009) 229–234

21. Khan, A., Husain, S.A.: A fragile zero watermarking scheme to detect and charac-
terize malicious modifications in database relations. The Scientific World Journal
2013 (2013)

22. Camara, L., Li, J., Li, R., Xie, W.: Distortion-free watermarking approach for
relational database integrity checking. Mathematical problems in engineering 2014
(2014)

23. El-Bakry, H., Hamada, M.: A developed watermark technique for distributed
database security. Computational Intelligence in Security for Information Systems
2010 (2010) 173–180

24. Razdan, R.: Real-time, distributed, transactional, hybrid watermarking method
to provide trace-ability and copyright protection of digital content in peer-to-peer
networks (March 7 2001) US Patent App. 09/799,509.

25. Mignotte, M.: How to share a secret. In: Workshop on Cryptography, Springer
(1982) 371–375

26. Khanna, S., Zane, F.: Watermarking maps: hiding information in structured data.
In: Proceedings of the eleventh annual ACM-SIAM symposium on Discrete algo-
rithms, Society for Industrial and Applied Mathematics (2000) 596–605

27. Xie, M.R., Wu, C.C., Shen, J.J., Hwang, M.S.: A survey of data distortion water-
marking relational databases. IJ Network Security 18(6) (2016) 1022–1033

28. Khanduja, V., Chakraverty, S., Verma, O.P., Singh, N.: A scheme for robust bio-
metric watermarking in web databases for ownership proof with identification. In:
International Conference on Active Media Technology, Springer (2014) 212–225

29. Khanduja, V., Verma, O.P., Chakraverty, S.: Watermarking relational databases
using bacterial foraging algorithm. Multimedia Tools and Applications 74(3)
(2015) 813–839

30. Kamel, I., AlaaEddin, M., Yaqub, W., Kamel, K.: Distortion-free fragile watermark
for relational databases. International Journal of Big Data Intelligence 3(3) (2016)
190–201

31. Alfagi, A.S., Manaf, A.A., Hamida, B., Olanrewajub, R.: A zero-distortion fragile
watermarking scheme to detect and localize malicious modifications in textual
database relations. Journal of Theoretical and Applied Information Technology
84(3) (2016) 404

32. Rani, S., Koshley, D.K., Halder, R.: Adapting mapreduce for efficient watermarking
of large relational dataset. In: Trustcom/BigDataSE/ICESS, 2017 IEEE, IEEE
(2017) 729–736

33. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Communications of the ACM 51(1) (2008) 107–113

34. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Fragments and loose associations: Respecting privacy in data publishing. Proceed-
ings of the VLDB Endowment 3(1-2) (2010) 1370–1381

35. Agrawal, S., Narasayya, V., Yang, B.: Integrating vertical and horizontal parti-
tioning into automated physical database design. In: Proceedings of the 2004 ACM
SIGMOD international conference on Management of data, ACM (2004) 359–370

36. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and reasoning about
systems. Cambridge university press (2004)

37. Rodŕıguez, L., Li, X.: A dynamic vertical partitioning approach for distributed
database system. In: Systems, Man, and Cybernetics (SMC), 2011 IEEE Interna-
tional Conference on, IEEE (2011) 1853–1858

38. Shamir, A.: How to share a secret. Communications of the ACM 22(11) (1979)
612–613

39. Iftene, S.: General secret sharing based on the chinese remainder theorem with
applications in e-voting. Electronic Notes in Theoretical Computer Science 186
(2007) 67–84

40. Schneier, B.: Applied cryptography: protocols, algorithms, and source code in C.
john wiley & sons (2007)

