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Abstract—In the era of big-data when volume is increasing
at an unprecedented rate, structured data is not an exception
from this. A survey in 2013 by TDWI says that, for a quarter of
organizations, big-data mostly takes the form of the relational
and structured data that comes from traditional applications.
In this reality, watermarking of large volume of structured
relational dataset using existing watermarking techniques are
highly inefficient, and even impractical in the situations when
periodic rewatermarking after a certain time frame is neces-
sary. As a remedy of this, in this paper, we adapt MapReduce
as an effective distributive way of watermarking of large
relational dataset. We show how existing algorithms can easily
be converted into an equivalent form in MapReduce paradigm.
We present experimental evaluation results on a benchmark
dataset to establish the effectiveness of our approach. The
results demonstrate significant improvements in watermark
generation and detection times w.r.t. existing works in the
literature.

Keywords-Large Relational Dataset; Watermarking; MapRe-
duce;

I. INTRODUCTION

Dealing with large dataset generated from various sectors
like health care, census, survey, web-based retail shops such
as e-bay or amazon, etc., in the order of terabytes or even
petabytes is a reality now-a-days. For example, as reported in
[1], U.S. health care data alone reached 150 exabytes (10'8)
in 2011 and it is predicted that it will exceed the zettabytes
(10%!) and the yottabytes (10?*) in the near future. This is
observed that more than 20% of large volume of data are
structured in nature and are stored in the form of relational
database [2]. Intuitively, like any other databases, these
databases also suffer from various attacks like copyright
infringement, data tampering, integrity violations, piracy,
illegal redistribution, ownership claiming, forgery, theft, etc.
[3].

Database watermarking has been introduced as one of
the most effective solutions to address the above mentioned
threats [4], [S], [6], [7]. The basic idea of this technique is
to embed a piece of information (known as watermark) in an
underlying data and to extract it later from any suspicious
content in order to verify the absence or presence of any
possible attacks. The former phase is known as Embedding
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phase, whereas the later phase is known as Detection or
Verification phase [8].

A. Related Works

Watermarking of relational databases was first proposed
by Agrawal et al. in [5]. Subsequently many works have
been proposed in this direction [4], [6], [7], [9], [10],
[11], [12], [13], [14], [15]. Broadly the watermarking of
relational databases can be categorized into distortion-based
[5], [6], [7], [9], [12] and distortion-free [4], [10], [11],
[13], [14], [16], [17]. In general, distortion-based techniques
embed watermark keeping in mind the usability of data,
whereas distortion-free techniques generate watermark based
on various characteristics of data. A comprehensive survey
on various types of watermarks and their characteristics,
possible attacks, and the state-of-the-art can be found in [3].
A recent survey by Xie et al. is reported in [18] giving
special attention to the distortion-based watermarking.

The existing proposals on distortion-based watermarking
techniques include random bit flipping [5], [12], fake tuple
insertion [19], random bit insertion [7], [9], etc. On the
other hand, distortion-free watermarking techniques in the
literature are based on tuple reordering [4], binary image
generation [10], [11], generation of local characteristics like
range, digit and length frequencies [14], matrix operations
[13], etc. To the best of our knowledge, the first proposal to
address watermarking of distributed databases is proposed
in [20] which supports database outsourcing and hybrid
partitioning.

B. Motivations and Contributions

Although all the existing techniques work well in water-
marking of small dataset, however they are highly inefficient
in case of watermarking of large relational dataset. The pri-
mary reason is the involvement of various computations like
hash calculation, grouping of tuples, group-wise watermark
generation, etc., which consume a significant amount of time
in sequential processing of all database-tuples, thus making
the existing watermarking techniques highly inefficient and
even impractical for very large databases. This concern
also pertains to the situations where databases go through
frequent updation due to which periodic rewatermarking
after certain time frame is necessary.



To ameliorate this performance bottleneck, this paper
presents an efficient way of watermarking of large scale
relational dataset exploiting the benefits of parallel and
distributed computing environment. In particular, we adopt
the potential of the MapReduce paradigm identifying the key
computational steps involved in watermarking approaches.

To summarize, our major contributions in this paper are:

o We adapt MapReduce for fast and efficient watermark-
ing of large scale relational databases, as an alternative
to the existing sequential algorithms and their chal-
lenges.

o We design a generic MapReduce-based watermarking
algorithm identifying the key computational steps in-
volved in watermarking approaches.

o A case study describing the design of MapReduce-
based variant of an existing sequential form of water-
marking algorithm is presented.

o Finally, we perform rigorous experiments on bench-
mark dataset. The evaluation results are really encour-
aging and provide an evidence of significant improve-
ments over the existing sequential approaches.

To the best of our knowledge, till now there exists no
watermarking technique for big-data in the literature and this
is the first work towards this direction. In this preliminary
work, we effectively deal with only the “volume” charac-
teristic of big relational dataset, and we restrict only to the
distortion-free techniques which generate watermark from
the underlying database content.

The structure of the paper is as follows: Section II briefly
introduces MapReduce algorithm. Section III presents our
proposed approach of database watermarking using MapRe-
duce. A case study describing the design of MapReduce
variant of sequential watermarking algorithm is presented in
section IV. The experimental results are analyzed in section
V. Finally we conclude our work in section VL.

II. MAPREDUCE ALGORITHM AT A GLANCE

Jeffrey et al. [21], [22] introduced MapReduce program-
ming model as highly efficient and reliable solution to
process large dataset in distributed computing environment.
In general, MapReduce algorithm is implemented based on
two primary functions: map and reduce. The map function
processes a key-value pair to generate a set of intermediate
key-value pairs. The output of a map function then acts as
input to the reduce function which merges all intermediate
values associated with the same intermediate key. This al-
lows programmers without any experience with parallel and
distributed systems to easily utilize the resources of a large
distributed system. In particular, distributed and parallel
computation of these functions results into a significant
reduction of the overall data processing time. A pictorial
form of MapReduce algorithm to compute word frequency is
depicted in Figure 1. The map function emits each word plus
an associated count of occurrences (just ‘1’ in this example).

The reduce function sums together all counts emitted for a
particular word.
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Figure 1: Word frequency computation using MapReduce

III. ADAPTING MAPREDUCE ALGORITHM FOR
DISTORTION-FREE WATERMARKING

In this section, we provide an insight on how to adapt
MapReduce-based computing paradigm as an alternative to
the existing watermarking algorithms, leading to an effi-
cient watermarking of large relational dataset. In this paper,
although we mainly focus on distortion-free watermarking
techniques, however this can easily be extended to the case
of distortion-based watermarking as well.

As observed, the existing distortion-free watermarking
techniques [4], [10], [11], [13], in general, mainly focus
on the generation of watermarks from database-contents.
Precisely, they consist of two prime phases: (i) Partitioning
of tuples into groups, and (ii) Watermark generation from
each group. The obtained watermarks from all groups may
finally be combined together to generate watermark for the
whole database.

Watermark Generation using MapReduce: While de-
signing MapReduce algorithm for watermarking of large
dataset, our primary focus is how to adapt parallel com-
putation in an efficient way into the above-mentioned two
prime phases — partitioning and watermark generation. This
results a significant improvement in the computational costs
involved in those phases.

Algorithm 1 and 2 in Figure 2 refer to the watermark
generation process in MapReduce framework. On assigning
each mapper a fragment R from the large dataset, the MAP
function applies partition-function f on each tuple ¢ and
computes the group-ID g;4 to which the tuple belongs. An
example of f is a modulo function on hash [23] of the tuple
values [5]. This group-ID along with the tuple itself acts as
an intermediate key-value pair emitted as the output from
the mapper. Observe that this way multiple mappers process
large scale dataset in parallel and partition them in efficient
way.

The outputs of all mappers are then fed to a reducer which
finally computes the watermark W for whole database by
computing group-wise watermarks W, and by combining
them together using suitable operation (denoted by ||) . This



Algorithm 1 Watermark Generation: MAPPER

1: procedure MAP (R)

2 for each tuple t € R do
3: Compute g;q = f(t)
4: emit (gid,t)
5
6:

end for
end procedure

Algorithm 2 Watermark Generation: REDUCER

1: procedure REDUCE (g;q, list := [t1,t2,...])
2 Compute watermark W, for g;q using list
3: emit (gia, Wy)
4
5

: end procedure
: Compute W = ||W,

Figure 2: Watermark Generation algorithm using MapRe-
duce

is worthwhile to mention that the proposed MapReduce-
based watermarking framework is generic in the sense that
any existing watermarking technique is easily adaptable to
this.

Watermark Detection using MapReduce: The water-
mark detection process for a suspicious database fragment
R’ is formalized in Algorithm 3 and 4 in Figure 3.

The input of detection phase is a suspicious database
fragment and the output is a reasoning about the success
of watermark detection/verification.

Algorithm 3 Watermark Detection: MAPPER

1: procedure MAP (R/) )
2 for each tuple t € R do
3: Compute g;q = f(t)
4: emit (gid,t)
5 end for

6: end procedure

Algorithm 4 Watermark Detection: REDUCER
: procedure REDUCE (g4, list := [t1, t2, ...])

1

2 Compute Wg/ for giq using list

3 emit (gid, Wg/)

4: end procedure

5: Compute W' = ||W;

6: if (W/ == W) then Verification = TRUE
7: else Verification = FALSE

8: end if

Figure 3: Watermark Detection algorithm using MapReduce

As like watermark generation phase, on assigning each
mapper to a fragment R’ of the large suspicious dataset
during detection, the MAP function applies on each tuple
t € R the same partition-function f as used in the
generation phase to compute its group-ID g;4. The MAP
function this way emits (g;4,t) as intermediate key-value
pair which is then used as input to the reducer. The REDUCE

function then computes the watermark ng for each group.
The complete watermark W' for the suspicious database is
obtained by following similar operations as in the watermark
generation phase. Finally the detection phase concludes a
success if W' matches with the original watermark W.

IV. A CASE STUDY: TRANSFORMING SEQUENTIAL TO
DISTRIBUTED WATERMARK COMPUTATION

This section considers the watermarking algorithm pro-
posed by Li et al. in [4] and describes how to design
its MapReduce version making it suitable for large scale
databases. The notations and parameters used in the algo-
rithms are depicted in Table I.

w number of tuples in the relation
T '™ tple
ri.Aj 5P attribute of the '™ tuple
h; tuple hash of the i*™ tuple
hi¥ primary key hash of the g tuple
g number of groups after partitioning of tuples
G k" group
Jid group-ID of a particular group
qk number of tuples in group k
H group hash
K watermarking key
w watermark generated from a group
W, watermark generated from a suspicious group
4 result of watermark detection

Table I: Notations and Parameters

Algorithms 5, 6 and 7 in Figure 4(a) depict the sequential
version of the watermarking algorithm by Li et al. [4]. The
Algorithm 5 initially computes tuple hash and primary key
hash for each tuple in steps 5 and 6 respectively. In steps 7
and 8, the database tuples are divided into various groups.
In algorithm 6, group hash is calculated from each group in
step 2. The watermark is then generated from group hash
by calling ExtractBits in Algorithm 7. The Algorithm
6 then finally reorders the tuples in a group based on these
watermark bits. Observe that sequential processing of tuples
to partition and to generate watermarks absorb a significant
amount of time. This makes the algorithm highly inefficient
in case of big relational databases.

The corresponding MapReduce algorithms for partitioning
and watermark-generation for each group are depicted in
Figure 4(b). Given a fragment R, the mapper in Algorithm 8
computes tuple hash and primary key hash for each tuple (in
steps 3 and 4 respectively) and computes the group to which
a tuple belongs (step 5). The mapper then emits group-ID
and (tuple, tuple hash, primary key hash) as intermediate
key-value pairs in step 6. These key-value pairs act as input
to the reducer depicted in Algorithm 9. The reducer first
sorts the tuples in the group according to their primary key
hash values in steps 3, and computes the group hash in step
4. The watermark bits from this group hash are extracted by
calling Ext ractBits as depicted in Algorithm 10. Finally,
the tuples are reordered based on the watermark in steps 7-
12 of Algorithm 9.



Algorithm 5 Li2004 Watermark Generation

i: for k =1to g do

2: qr = 0

3. end for

4 fori=1tow do

5 h; = HASH(K, ;. Ay, ..., ri.A,)  // tuple hash
6: ;¥ = HASH(K,r;.P) // primary key hash
7 k= hi"mod g

8 ri = Gy

9 q ++

10: end for

i: for k = 1tog do

12: watermark generation in Gy, // See Algorithm 6
13: end for

Algorithm 6 Watermark Generation in G/,

1: Sort tuples in Gy, in ascending order based on primary key hash // virtual

operation

2 H = HASH(K, hy, hs, ..., hy,)

3 W = ExtractBits(H,qk/2) // See algorithm 7

4 fori=1toq -1 do

5 if (Wi/2] ==1 and h; < hiy) or (W[i/2] == 0 and h; > h;11) then

6: Switch 7; and 74,
7 end if
8:
9:

i=i+2
end for

Algorithm 7 ExtractBits(H, 1)

1. if length(H) > [ then

2: W = concatenation of first [ selected bits from H

3. else

4 m =1 - length(H)

5: W = concatenation of H and ExtractBits(H,m)
6. end if

7: return W

Algorithm 8 Watermark Generation using MapReduce: Mapper
procedure MAP (R)

1:
2: fori=1tow do

3 hi = HASH(K, r;. Ay, ..., Ay) /I tuple hash
4 h;" = HASH(K,7;.P) // primary key hash
5: gia = hi¥mod ¢

6: emit (gia, (i, i, h,P))

7. end for

s: end procedure

Algorithm 9 Watermark Generation using MapReduce: Reducer

1: procedure REDUCE (giq, list := [r1,72, ..., 7%])

2 k= |list|

3 Sort tuples in ascending order according to h;*. // virtual operation
4 Group_hash = HASH(K, hi, ..., hg) ~ // group hash

5: W = ExtractBits(Group_hash,k/2) // algorithm 10

6: emit(gia, W)

7: fori=1tok-1do

8: if (W[i/2] ==1and h; < hiy1) or (W[i/2] == 0 and h; > h;+;) then
o: Switch r; and 7;4,

10: end if

1 i=1i+2

12: end for

13: end procedure

Algorithm 10 Ext ractBits(H, 1)
1. if length() > 1 then

2 W = concatenation of first [ selected bits from H

3 else

4 m =1 - length(H)

s: W = concatenation of H and ExtractBits(H,m)
6. end if

7. return W

(a) Sequential Watermark Generation Algorithm by Li et al. [4]

Algorithm 11 Li2004 Watermark Detection

1: for k=1togdo

2 =0

3. end for

4 fori=1tow do

5: h; = HASH(K, 1. Ay, ...,7;.A,) /] tuple hash
6: h;" = HASH(K,r;.P) // primary key hash
7
8:

k = h;"mod g
ri = Gy,
9: q ++
10: end for
1: for k = 1tog do
12: watermark verification in G, // See Algorithm 12
13: end for

Algorithm 12 Watermark Verification in Gy,

1: Sort tuples in G, in ascending order based on primary key hash
2 H = HASH(K, hy, hs, ..., her)

3 W = ExtractBits(H,qk/2) // See algorithm 7

4 fori=1to q -1do

B if ( h; < hi1y) then

6 W'[i/2] = 0)

7 else

8: W'i/2] =1)

9 if (W == ) then

10: (V=TRUE)
11: else

12: (V. =FALSE)
13: end if

14: end if

15 i=1i+2

16: end for

(b) MapReduce-based Watermark Generation Algorithm

Algorithm 13 Watermark Detection using MapReduce: Mapper

1. procedure MAP (R)
2: fori=1tow do

3 hi = HASH(K, r;. Ay, ...,1.Ar) /] tuple hash
4 h;" = HASH(K,7;.P) I/ primary key hash
5: gia = hi"mod ¢

6: emit (gig, (ri, hi, hi¥))

7 end for

s: end procedure

Algorithm 14 Watermark Detection using MapReduce: Reducer

1: procedure REDUCE (g;q, list := [r1, 79, ..., 7%])

2 k= |list|

3 Sort tuples in ascending order according to h;”. //virtual operation
4 Group_hash = HASH(K, hy, ..., hy) /I group hash

s: W = ExtractBits(Group_hash,k/2)

6: emit(gia, W)

7 fori=1tok-1 do

8: if ( h; < h;yp) then

9:

W'[i/2) = 0)
10: else(W'[i/2] = 1)
1 if W == W) then
12: (V=TRUE)
13: else(V = FALSE)
14: end if
15: end if
16: i=1i+2
17: end for

18: end procedure

(c) Sequential Watermark Detection Algorithm by Li et al. [4]

(d) MapReduce-based Watermark Detection Algorithm

Figure 4: MapReduce-based Watermarking Algorithm corresponding to the Li et al.’s sequential algorithm [4]




Similarly, Figure 4(d) depicts the MapReduce-based wa-
termark detection algorithm corresponding to the sequential
version in Figure 4(c) proposed by Li et al. This way any
existing watermarking technique can be converted into its
equivalent MapReduce form.

This is to observe that in the process of designing
MapReduce watermarking algorithm one has to identify all
possible prime computations (for example, hash value com-
putation, grouping of database tuples, etc.) which involve
high computational complexity for large dataset. A careful
assignment of these computations to mappers, of course,
reduce watermarking time significantly.

V. EXPERIMENTAL ANALYSIS

We have searched the literature exhaustively and identified
five significant proposals [4], [10], [11], [13], [14] for our
experiments. We have implemented all the five algorithms
in both sequential and MapReduce framework using Java.
The experiments are performed using the Hadoop framework
(version 2.7.0)! installed on a server equipped with six core
Intel Xeon Processor, 2.4 GHz Clock Speed, 128 GB RAM
and Linux Operating System. We use benchmark dataset
obtained by modifying the Forest Cover Type dataset’ into
a large volume.

The following notations are used in this section to describe
the experimental results:

T, : Watermark generation time in minute
T4 : Watermark detection time in minute
M : Number of Mappers

G : Number of groups formed from the database tuples

This is worthwhile to mention here that, although we have
varied the number of mappers in our experiments, but we
have used single reducer in all the cases.

Li et al.,, 2004 [4]: The sequential and MapReduce algo-
rithms for this technique have been discussed in section
IV. In these algorithms, the database is partitioned into
various groups and the watermark is generated for each
group separately.

Table II depicts the watermark generation and detection
times in both sequential- and MapReduce-based implemen-
tations by considering G equal to 10000 and 50000 in each
of these cases.

Unstallation details at http://hadoop.apache.org/
Zhttps://kdd.ics.uci.edu/databases/covertype/covertype.html

Existing | No. of |Size in Sequential MapReduce
algorithm | Tuples MB Ty Ta M Ty Ta
Lietal. | 5810120 | 276 23.19 24.43 2 5.26 5.23
[4] 11620240| 556 83.36 75.62 5 9.70 9.18
17430360| 840 172.44 | 169.66 7 14.64 | 13.44
23240480| 1124 | 294.74 | 291.60 9 19.96 | 18.28
34860720 1692 | 586.00 | 566.83 13 31.72 | 28.61

(a) Watermarking results for G = 10000

Existing | No. of |Size in Sequential MapReduce
algorithm | Tuples MB Ty Tq M Ty Tq
Lietal. |5810120 | 276 7.16 6.87 2 511 | 4.89
[4] 11620240| 556 | 22.99 | 19.22 5 9.26 | 852
17430360| 840 | 41.75 | 39.08 7 13.55 | 12.25
23240480 1124 | 69.19 | 66.60 9 18.26 | 16.23
34860720 1692 | 124.02 | 120.25 13 25.64 | 23.83

(b) Watermarking results for G = 50000

Table II: Results by sequential watermarking algorithm of
Li et al. [4] and by its corresponding MapReduce Version

The performance comparison in terms of watermark gen-
eration time and detection time for G equal to 10000 and
50000 are shown in Figures 6.
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Figure 6: Performance comparison between Li et al.’s se-
quential [4] and its corresponding MapReduce Version

The observations are as follows:

o The watermark generation time and detection time
reduce significantly in MapReduce framework as com-
pared to the sequential one.

o From Figure 6(a) and 6(c), we observe that the wa-
termark generation time decreases as the number of



groups increases. Similarly, we observe from Figure
6(b) and 6(d) that the detection time decreases as the
number of groups increases.

Bhattacharya and Cortesi, 2009 [10]: The watermark
generation technique proposed in [10] is based on the
following two steps: (7) grouping of tuples in the relation and
(1) generation of watermark for each group independently.
In the former step, the message authenticated code (MAC)
using HMAC for each tuple is calculated by seeding a secret
key along with its primary key. This resultant value is used
to determine the group to which the tuple belongs. In the
later step, the most significant bits (MSBs) of the attributes
values are used to generate watermark.

In our MapReduce-based version, we have assigned to the
mappers the task of identifying group-ID for each tuple and
the extraction of MSBs from all attributes values. The group
to which a tuple belongs is calculated based on the message
authenticated code (MAC) using HMAC. All mappers then
send the group-ID and the MSBs of tuples as key-value
pair to the reducer. Finally, the reducer collects the MSBs
belonging to each group and combines them to form the
watermark.

The comparison of watermark generation and detection
times in sequential and MapReduce framework are depicted
in Table III and Figure 7.

is performed by extracting a fixed number of most significant
bits (MSBs) and least significant bits (LSBs) from a selected
field of each tuple in a group and by combining them

together using concatenation operation.

Existing | No. of |Size in|—>cduential MapReduce
algorithm | Tuples | MB Ty Ta M Ty Ta
Bhatta- | 5810120 | 276 5.56 8.23 2 5.08 5.61
charya |11620240| 556 10.98 15.54 5 8.31 9.25
et al. [11] [17430360| 840 16.09 22.65 7 11.10 | 12.48
23240480( 1124 21.49 30.71 9 14.73 | 16.31
34860720| 1692 32.16 46.59 13 19.99 | 23.92

Table IV: Results by sequential watermarking algorithm of
Bhattacharya et al. [11] and by its corresponding MapRe-
duce Version for G = 50000
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Existing | No. of |Size in | >cduential MapReduce
algorithm | Tuples | MB Ty Ta M Ty Ta
Bhaua- | 3810120 | 276 | 3.89 | 472 7 [ 352 | 383
charya |T1620240] 556 | 7.77 | 945 5574 | 66
et al. [10] | T7430360] 840 | 1113 | 14.29 T 824 | 922
73240480] 1124 | 1528 | 18.54 91095 | 1181
34860720 1692 | 2238 | 28.01 13 [ 1550 | 1690

Table III: Results by sequential watermarking algorithm of
Bhattacharya et al. [10] and by its corresponding MapRe-
duce Version for G = 50000
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Figure 7: Performance comparison between Bhattacharya
et al’s sequential [10] and its corresponding MapReduce
Version for G = 50000

Bhattacharya and Cortesi, 2010 [11]: The grouping of
tuples in this proposal follows similar steps as in [10].
However, unlike [10], the group-wise watermark generation

Figure 8: Performance comparison between Bhattacharya
et al.’s sequential [11] and its corresponding Mapreduce
Version for G = 50000

In our MapReduce-based version, like in the case of [10],
the mapper computes the group-ID based on the primary
key hash value and extracts the MSBs and LSBs from
the selected attribute value in each tuple belonging to the
dataset assigned to it. The mapper sends this group-ID
along with the generated watermark bits for each tuple as
key-value pair to the reducer. The reducer then combines
these watermark bits according to the group-ID in order to
generate watermark for each particular group.

The comparison of watermark generation and detection
times in sequential and MapReduce framework are shown
in Table IV and Figure 8.

Khan et al., 2013 [14]: This technique comprises of sub-
watermark generation for digit count, length, and range
of data values. In our MapReduce-based implementation,
mappers compute digit frequency, length frequency and
range frequency of data values in each tuple. The mapper
then sends the tuples along with these frequencies as key-
value pair to the reducer. On receiving inputs, the reducer
computes digit sub-watermark, length sub-watermark and
range sub-watermark, and it finally generates complete wa-
termark by concatenating these three sub-watermarks.



Existing | No. of |Size in Sequential MapReduce
algorithm | Tuples MB Ty Ta M Ty Ta
Khan et | 5810120 | 276 12.88 12.67 2 9.05 9.75
al [14] |11620240| 556 2591 27.88 5 17.76 | 20.91
17430360| 840 40.98 39.54 7 26.55 | 26.63
23240480| 1124 | 51.93 51.84 9 31.87 | 33.34
34860720| 1692 | 79.43 77.65 13 32.60 | 34.97

Table V: Results by sequential watermarking algorithm of
Khan et al. [14] and by its corresponding MapReduce
Version for G = 50000
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Figure 9: Performance comparison between Khan et al.’s
sequential [14] and its corresponding Mapreduce Version for
G = 50000

The results of watermark generation and detection times
in sequential and MapReduce-based executions are shown
in Table V and the comparison is depicted in Figure 9.

Camara et al., 2014 [13]: This distortion free technique is
based on grouping of tuples into various square matrices of
size n X n, where n is the number of attributes. Individual
watermark is first computed for each matrix as follows: The
determinant value of the matrix and the different values of
the minor of diagonal values in the matrix are computed,
which are then concatenated to get the watermark for the
matrix. The final watermark for the whole database follows
the concatenation of matrix-wise watermarks.

Existing | No. of |Size in Sequential MapReduce
algorithm | Tuples MB Ty Ta M Ty Ta
Camara 115 276 17.52 18.16 2 14.40 | 13.47
et 230 556 3592 | 3590 5 29.37 | 27.14
al[13] 345 840 5330 | 53.34 7 37.46 | 38.63
460 1124 | 7190 | 71.63 9 50.60 | 47.32
690 1692 | 102.89 | 102.63 13 61.03 | 58.33

Table VI: Results by sequential watermarking algorithm of
Camara et al. [13] and by its corresponding MapReduce
Version for G = 50000

Since the matrix operations are the primary reason of
affecting the watermarking time, we have used two passes
of computations in our MapReduce algorithm. In the first
pass, the mappers compute the matrix-ID of each tuple to
which it belongs and send them along with their associated
tuple-values as key-value pair to the reducer. The reducer

125 T T T 125 T T T T

:
—— Sequential —o— Sequential
—&— MapReduce —+— MapReduce
100 A 100 |

]
T

Time (Minute)

Time (Minute)

o
S
T
I
o
T

0 100 800 1,200 1,600 2,000 0 400 800 1,200 1,600 2,000
Size of dataset (MB) Size of dataset (MB)

(a) Watermark generation time (b) Watermark detection time

Figure 10: Performance comparison between Camara et al.’s
sequential [13] and its corresponding Mapreduce Version for
G = 50000

forms square matrices based on the matrix-IDs of the tuples.
The algorithm uses this information (that is, matrix-ID and
values in each matrix) as input to the second pass. In the
second pass, the mappers compute matrix-wise watermarks
which are finally sent to the reducer to compute watermark
for the whole database.

The comparison of watermark generation and detection
times are depicted in Table VI and Figure 10. Note that in
our experiment we have considered square matrices of size
5x%5.
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Figure 11: Percentage of time-reduction

Common observations: All the distortion free watermark-



ing techniques referred in this section have some common
observations when we execute their MapReduce versions in
Hadoop framework. These observations are as follows:

o The watermark generation and detection times reduce
significantly in MapReduce as compared to their se-
quential executions.

o As intuitive, the performance improves as the number
of mappers increases.

o Let ts and t,, be the time required in Sequential and
MapReduce-based computations respectively. Let us
define the percentage of time-reduction as follows: % of
time-reduction:tszJ x 100. This is observed that the
percentage of time-reduction in watermark generation
and detection increases as we increase the size of the
dataset. This is depicted in Figure 11. Observe that the
percentage of time-reduction is highest in case of Li et
al. [4].

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we introduced an efficient watermarking
approach for large relational databases adapting the potential
of MapReduce paradigm. We have focused on distortion-
free watermarking and implemented the existing algorithms
in both sequential and MapReduce form. The experimental
results showed that there is significant reduction in water-
mark generation as well as detection time in MapReduce.
We observed that the percentage reduction of time from
sequential to MapReduce increases with the increase of data
size. To the best of our knowledge, this is the first work
towards big relational database watermarking. As future
works, we aim to extend this proposal to distortion-based
watermarking and to focus on watermarking of bigdata
considering other key characteristics.
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