REGRESSION ANALYSIS : LINEAR

BY - MAUAJAMA FIRDAUS & TULIKA SAHA



MACHINE LEARNING

* Itis the science of getting computer to learn without being
explicitly programmed.

e Machine learning is an area of artificial intelligence concerned
with the development of techniques which allow computers
to "learn".

e More specifically, machine learning is a method for creating
computer programs by the analysis of data sets.



APPLICATIONS

* Search Engines like Google, Bing etc.
* Facebook photo tagging application.
e Self Customizing Programs and many more.



SUPERVISED LEARNING

* Given the “right answer” for each of our
examples in the training set.

* The task of the algorithm is to find many more
such right answers for new examples.

* Consists of two problems-

* Regression Problem
e Classification Problem



REGRESSION PROBLEM

* The term “regression” refers to the fact that we are
trying to predict a continuous-valued output.

Housing price prediction.
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CLASSIFICATION PROBLEM

* |t refers to the fact that we are trying to
predict discrete valued outputs.
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UNSUPERVISED LEARENING

* Given a set of data or examples in the training

set without prior information of what the data
is all about.

* The task of the algorithm is to find the
structure among the data.

* Clustering Problem is an example of
Unsupervised Learning.
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LINEAR REGRESSION

Why are we looking at this algorithm ?

* Machine Learning — a field of predictive modelling

* Linear Regression
— Developed in the field of statistic

— A model that attempts to show the relationship
between two variables with a linear equation

— Borrowed by Machine Learning
* Finds it’s application in
— Evaluating Trends and Sales Estimates
— Analyzing the Impact of Price Change and many more



LINEAR REGRESSION

e Basic Framework

— Dependent variable y, also called the
output/explained variable which is to be predicted

— Independent variables x;, also called the
input/explanatory variables that is to be used for
making predictions.

* Regression is the general task of attempting to
predict the value of output variable y from the
input variables x; .



MODEL REPRESENTATION
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MODEL REPRESENTATION

Training set of
housing prices
(Portland, OR)

Notation:

Size in feet?(x)
2104
1416
1534
852

Price ($) in 1000's (y)
460
232
315
178

m = Number of training examples
X's = “input” variable / features
y's = “output” variable / “target” variable



MODEL REPRESENTATION

Training Set
Learning Algorithm

Estimated hﬂ(x) — 9“ + 91 X

price

How do we represent h ?

Size of
house



MODEL REPRESENTATION

Given a training set,
Hypothesis: hg(x) = 04 + 01X
where 0.s : Parameter

How to choose ©;s



MODEL REPRESENTATION

ho(x) = 0y + 0,
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COST FUNCTION

Idea : Choose 8, 0, so that he(X) is as close to y
for our training examples (x, y) .



COST FUNCTION

So going with the idea,

If hypothesis : hg(x) = 8y + 01X

We want to minimise the squared error function

i.e. (hﬂ(x(il) — y@M)2 i.e the difference
between the predicted value (hy(x)) and the

actual label (y) should be as minimum as
possible.



COST FUNCTION

Therefore, the cost function becomes

J(6y,01) = 1/211] (iznl1 (hﬁ(xm) - y[i))Z)

where summation(22 ) represents sum over my
training set fromitom.

and where (1/,,,) represents that minimising one
half of something shall give us same values of 6,
and @; as minimising the entire thing.



COST FUNCTION

Hypothesis:
,I(;(:l') — 9() -+ 91.!'

Parameters:
0o, 0,

Cost Function:
-I(U(}.Hl] -— ﬁ Z (h”[.l'i‘”) . U{l])
=1

Goal: minimize J(6y.6,)
000+

So, overall we want to find the value ofeﬂ & 91
that minimises the entire expression.



GRADIENT DESCENT ALGORITHM

* Gradient Descent algorithm is basically used to
minimise some function J(say a cost function).

* Problem Setup
— Have some functionJ( , )
— Want to 0, 04
. - min /(8,6
Outline Hu,91]( 001)
— Start with some & (say =0, =0)

— Keep changing 6, 1®redu@,y( .01 ) until
we hopefully ergl ug@3t a minimumg = 6,



GRADIENT DESCENT ALGORITHM

repeat until convergence {
0 . .
0; =10, - “S_&](an 0,) , (forj=0&j=1) 3
where := is the assighment operator

o is the learning rate that controls how big a step we
can take downhill while creating descent

* Simultaneous update

o
temp 0:= 0, — aﬁ—%](ﬂﬂ, 0,)

8
temp 1:= 0, — aﬁ—ell(ﬂﬂ, 0,)

By i =temp O
0, =temp 1



GRADIENT DESCENT INTUITION

For eg :) say we have only one parameter, so,
]1]]]1](91) & 91 € R . hence the GD equation becomes

91 d
01:= 01~ dﬂl —J(61)

- (9 ) is the derivative term which basically
dﬂl denotes the slope of the line that is just
tangent to the function J(8;) atthe point 84



GRADIENT DESCENT INTUITION

— J(0) 20 ;=0 - a(positiveno.)
de,



GRADIENT DESCENT INTUITION

J(81)

\

&

d
29 /@D <0 0, = 0, - a(negativeno.)



GRADIENT DESCENT INTUITION
A

. If @ is too small, then

[(6) gradient descent will
converge slowly

pecause very small and
nence lot of steps are
oeing taken before it
gets anywhere close to
the global minimum.

—)



GRADIENT DESCENT INTUITION

A If @ istoo large, then

J(6) gradient descent will
overshoot the minimum
because the steps taken
are huge . It may fail to
converge .




GRADIENT DESCENT FOR LINEAR
REGRESSION

So, applying GD algorithm to minimise the
squared error cost function i.e.gnien](eﬂ,el)
0:Y1

Where,](g 8,) = 1/2111 E(hﬁ(x':‘) y@)2)
hy(x) = B + ;X &

Calculating the derivative part,

0 5 .
E J(8¢,01) = /2111 E(hﬂ(x‘:‘]) (_1))2)

6 5 .
<0 ](90 01) = /2111 12(8p + 04x — y)?%)
;



GRADIENT DESCENT FOR LINEAR
REGRESSION

SoforBgy,orj=0:

0 1 m i 1
5_90 J(8,04) = Eizlz(hﬂ(x“) - y¥)

for9,,orj=1:

5 1 m 1 1 1
8_91 J(89,01) = Ei:lz(hﬂ(x“) - y®). x®



GRADIENT DESCENT FOR LINEAR
REGRESSION

Now , by applying GD algorithm to the previous
equation(derivative part),

repeat until convergence {

1 . |
0p =0y —a— . " (hy(xV) — y®
0 0 {Iml—l ( H(X ) y)

1 . . .
0. — 0. — a—. "y (h.(xD) — vD) 5@
1 1 “—ml_l ( E(K ) yV). x

}update 0, & 0, simultaneously



FEATURE SCALING

* |f one feature has a range say 0-2000 & another
say 0-5i.e. a 2000 to 5 ratio, then the contours of
the cost funtion takes up a very skewed elliptical
shape & the GD may end up taking a long time &
can oscillate back & forth before it can finally find
its way to the global minimum.

* A useful thing to do is scale the features i.e. the
different features take on similar range of values.

* So, by feature scaling we get the features in a
range of -1 to +1.



LINEAR REGRESSION WITH MULTIPLE

VARIABLES
for multiple features,
ho(x) =0y +0:x; + 0,x, + ......... + 0,x,
For convenience of notation , define xg =1
_xn_ _90_
X1 6,
X=| |eRr! O6=|"|€ R
X —Bn—

So, hB(X) = BnXﬂ + 91}(1 + 92X2 + + ann
he(x) = 0'x



POLYNOMIAL REGRESSION

* It allows to use the machinery of linear regression to fit very
complicated even non-linear function to the data.

Price

{y)

Size (x)

Quadratic model : 9{} T 911( T 92)(2
Cubic model :90 + le + 92)(2 + 93)(3



POLYNOMIAL REGRESSION

The form of hypothesis is :
hH(X) — 9[] + lel + 92X2 + 93X3

hy(x) = 0, + 0, (size) + 0,(size)” + B5(size)’
where x, = size , X2 = (size)® X3 = (size)

* Feature Scaling is required here



NORMAL EQUATION

* GD is basically an algorithm for linear regression
that takes multiple iterations to reach the global
minimum or to minimise a cost function 7(6).

* Normal Equation is a method to solve for ©

analytically i.e. in one step we get the optimum
value .

* Intuition:If 1D, (8 € R)
1(0) = ab% + b8 + ¢
To minimise the above quadratic function, we

calculate Elhe derivative of the function and set it
toOi.e. T J(8) =0 & solve for® .



NORMAL EQUATION

Examples: m = 4.

Size (feet’) | Number of | Number of | Age of home Price (51000)
bedrooms floors (years)

Iy Iy ' Iy Ly Y
1 2104 5 1 45 460
1 1416 3 2 40 232
1 1534 3 2 30 315
1 852 2 1 36 178
1 2104 5 1 45 ;{;g

X = | ];I.lb J 2 -llU v=|m=
1 1534 3 2 30 1:
1 852 2 1 36 | 178]

6 =Xx"x)"x"y



GRADIENT DESCENT Vs NORMAL
EQUATION

GRADIENT DESCENT NORMAL EQUATION

* Need to choose ¢ | * No need to choose € .

* Needs many iterations * Needs no iteration

* Works well evenifnislarge ¢ Slowif nislarge because it
where n is the no. of needs to compute (XTX)_1

features. which is n*n matrix .



